Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems

نویسندگان

  • John W. Pearson
  • Martin Stoll
  • Andrew J. Wathen
چکیده

In this article, we motivate, derive and test effective preconditioners to be used with the Minres algorithm for solving a number of saddle point systems, which arise in PDE constrained optimization problems. We consider the distributed control problem involving the heat equation with two different functionals, and the Neumann boundary control problem involving Poisson’s equation and the heat equation. Crucial to the effectiveness of our preconditioners in each case is an effective approximation of the Schur complement of the matrix system. In each case, we state the problem being solved, propose the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which demonstrate that our solvers are effective for a wide range of regularization parameter values, as well as mesh sizes and time-steps. AMS subject classifications. Primary 65F10, 65N22, 65F50; Secondary 76D07

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast solver for an H1 regularized PDE-constrained optimization problem

In this paper we consider a PDE-constrained optimization problem where an H1 regularization control term is introduced. We address both timeindependent and time-dependent versions. We introduce bound constraints on the state, and show how these can be handled by a Moreau-Yosida penalty function. We propose Krylov solvers and preconditioners for the different problems and illustrate their perfor...

متن کامل

PDE-constrained optimization: Preconditioners and diffuse domain methods

This thesis is mainly concerned with the efficient numerical solution of optimization problems subject to linear PDE-constraints, with particular focus on robust preconditioners and diffuse domain methods. Associated with such constrained optimization problems are the famous first-order KarushKuhn-Tucker (KKT) conditions. For certain minimization problems, the functions satisfying the KKT condi...

متن کامل

One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem

In this paper we describe the efficient solution of a PDE-constrained optimization problem subject to the time-periodic heat equation. We propose a space-time formulation for which we develop a monolithic solver. We present preconditioners well suited to approximate the Schur-complement of the saddle point system associated with the first order conditions. This means that in addition to a Richa...

متن کامل

Robust Iterative Solution of a Class of Time-Dependent Optimal Control Problems

The fast iterative solution of optimal control problems, and in particular PDE-constrained optimization problems, has become an active area of research in applied mathematics and numerical analysis. In this paper, we consider the solution of a class of time-dependent PDE-constrained optimization problems, specifically the distributed control of the heat equation. We develop a strategy to approx...

متن کامل

A new approximation of the Schur complement in preconditioners for PDE-constrained optimization

Saddle point systems arise widely in optimization problems with constraints. The utility of Schur complement approximation is now broadly appreciated in the context of solving such saddle point systems by iteration. In this short manuscript, we present a new Schur complement approximation for PDE constrained optimization, an important class of these problems. Block diagonal and block triangular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012